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GENERALIZATION OF AN INEQUALITY OF BIRNBAUM AND
MARSHALL , WITH APPLICATIONS TO GROWTH RATES FOR
SUBMARTINGALES

by Eric V. Slud’
Mathematics Department
University of Maryland
College Park, MD. 20742

ABSTRACT: ~ The well-known submartingale maximal inequality of
Birnbaum and Marshall (1961) is generalized to provide upper tail
inequalities for suprema of processes which are products of a
submartingale by a nonincreasing nonnegative predictable process.
The new inequalities are proved by applying an inequality of
Lenglart (1977), and are then used to provide best-possible
universal growth-rates for a general submartingale in terms of the
predictable compensator of its positive part. Applications of these
growth rates include strong asymptotic upper bounds on solutions to
certain stochastic differential equations, and strong asymptotic
lower bounds on Brownian-motion occupation-times. -
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] Key words and phrases: continuous-time submartingale, predictable
- compensator, Lenglart Inequality, strong asymptotic growth rate,
occupation times for Brownian Motion.
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. i. Introduction. A large part of the usefulness of submartingales as a

x: class of stochastic processes derives from the availability of upper-tail S
.. robability inequalities like Doob’s (Doob 1953, Theorem 3.4; Liptser N
O y q o '-P...I
5 . . ~'\-: i
- and Shiryaev 1977, vol. 1, Theorem 3.2) for their suprema. Such g .-3
2 inequalities are of great importance in many key calculations of SRS
-~ :':‘:':'..'I
» probability theory, e.g. in establishing asymptotic rates of growth for :1;?_3;:;f
o St
b proving various sorts of strong laws, in checking tightness of sequences of R
- laws of stochastic processes, and generally in relating the stochastic RO
f :l‘:-l‘:‘\
$ 1 a:\::‘\-
. \._\‘I-
’ 1 }f.\:}
) Research partially supported by the Office of Naval Research, under contract . -
;. N00014-86-K-0007
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behavior of the supremum of a process on an interval to its stochastic
behavior at the right endpoint of the interval.

The inequality of Birnbaum and Marshall (1961, Theorem 5.1)
which we generalize in this paper is a very useful extension of Doob’s
inequality because it gives a tail-probability bound for the supremum of a
process which need not itself be a submartingale [so that Doob’s maximal
inequality can not be applied directly] but which is a product of a
submartingale by a nonnegative, nonincreasing, right-continuous, adapted
function.  The Birnbaum-Marshall inequality includes the Chebychev,
Kolmogoroff, and Hajek-Renyi inequalities [Loeve 1955, pp. 235, 386;
Petrov 1975, p. 51}, which are among the handiest inequalities
concerning the maxima of partial sumns of independent summands. The
power of the (generalized) Birnbaum-Marshall inequality can be seen
clearly in the uses to which it will be put in Sections 3 and 4.

The new observation motivating the present work is that the
inequality of Birnbaum and Marshall can be proved and improved by means
of the following inequality due to Lenglart (1977). This inequality of
Lenglart can be regarded as the "master inequality" of the Doob type for
tail probabilities of suprema of processes which can be "dominated" by a
right-continuous increasing predictable process.

Theorem 1.1 [ Lenglart inequality, 1977 ] If X(1) isa {F(t) }-adapted
process [ on a probability space (,F,P) ] which is a.s. in D[0,») as a
random function and which satisfies X(0) =0 a.s. , and if A(‘) is any

right-continuous nondecreasing {F(t)}-predictable process such that
(i) A(Q0) = 0, and (ii) for any bounded stopping-time t, E X(t) <EA[,
then for arbitrary positive constants ¢ and d and every essentially
bouided stopping-time t,
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P{ sup X(s) 2c} € ¢ E{A(r)"d} +P{A(x) 2d}
Oss<t

Note: Here and throughout the paper, if I = [a,b] or [a,b) is a
subinterval of [0,c0) , then D(I) denotes the collection of right-continuous
real-valued functions on I which have limits from the left at all interior
points of 1. In addition, the notation x"y denotes min{x,y} . Finally,
we assume throughout the paper that the nondecreasing family {F(t) : t20}
of sub-o-fields of F on € is right-continuous in the sense that
Ft+) = N F(s) =F().
s:syt

To show the idea of our inequality without technicalities related to
continuous time, we first re-prove the inequality of Chow (1960) which is
the discrete-time specialization of our Theorem 2.1.

Proposition 1.2 [ Chow, 1960 ]: Let {Yk }RZO with Yo =0 be any
{ Fi }-adapted sequence of integrable r.v.’s on a fixed probability space
(Q,F,P), where { Fk }k20 is an increasing family of sub-o-fields
of F . In addition, let {ak}kZO with a,=0 be any a.s. nonincreasing

positive sequence of random variables with each a measurable with

respect to F| _, . Then

P{ supY a 21} < E 2 a

- (B -B - ) ’
K kkikki

k
where (B} isdefinedby B, = .21 E( Y; -Y}_i | Fiq )
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Proof. We will apply a discrete-time specialization of Theorem 1.1
(which is very easy to prove directly in the discrete-time setting) to the

sequence Xk = Y: &y (where xT = max{x,0} ) and the dominating

k
sequence Ay = { (B -B; ). We first calculate for any bounded
j= 1 % J-
stopping-time t <N,
Nt 4 +
EX 2EYa = EizO (Y(rp)e "2 e ™ Yire 3o
N-1
+ +
: 12 EI[r)] Y1+i)-Yi)
IN-1 T
= 12 EI[r)] i B,y g -By) hjzi 3-1 (B BJi)

Regarding the processes X, and At as constant on each time-interval
t € [k,k+1), we see that these processes satisfy the hypotheses of Theorem
1.1. Therefore
+ R N
P{ St[:p Ykak 2c} £ ¢ E Ei i1 (Bj -Bj_i).
j=
Finally, let N-—%o and apply the Monotone Convergence Theorem to
complete the proof. O
The plan of the paper is as follows. Section 2 contains the
statement and proof of the generalized inequality of the title. Section 3
applies it to give an upper-class type result for any submartingale in
terms of the predictable comj:nsator of its positive part as the time-

parameter goes to w . The . ewioidng growin-estimate is shown by an
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example to be best-possible. Finally, Section 4 contains two quite
different applications of the growth-estimate, one to a class of stochastic
differential equations and one to the asymptotics of Brownian-motion
occupation-times for complicated subsets of the real line.

2. Generalized Birnbaum-Marshall Inequality.

Theorem_2.1. .Suppose that X(}) is a locally square-integrable
{F(t): t20}-submartingale which is a.s. in D[0,T) [where T < »] and for
which X(0) = 0 a.s. Suppose also that h(') is a predictable {F(t)}-
adapted random function which is a.s. nonincreasing and nonnegative.
Then

T
P{ sup X@t)ht+) 21} < EJ h(s) dA+(s) ,
0<s<T 0

where A +(') is the predictable compensator of X+(') = max({ X+(') , 0}
In particular, if h(‘) is nonrandom , then

T
P{ sup X{t)h(t+) 21} < I h(s) du(s)
0<s<T 0

where u(s) = E X+(s) for s € [0,T].

Proof. Since max{x,0} is a nondecreasing convex function of x, Xt ()
is a (locally square-integrable) {F(t)}-submartingale. The general Doob-
Meyer Decomposition theorem implies the existence of the compensator

A, (). Let C> 0 bearbitrary, and let { r_} be a sequence of stopping

2
times increasing a.s. to T such that E X (tn) (o foreach n. Our

main task is to apply Lenglart’s inequality to the right-continuous process

Y (s)

x"'f(s"rn) 'min{ C , h,(s"c) }, 0<s<T,




for each n [where we make the notational definition h +(s) = h(s+) ]
along with the predictable process

t Ao
A() = Ion min{ h(s), C } dA+(s)

Clearly Y(:) is a.s. an element of D[0,T) satisfying Y(0) = O,
and A(') is a.s. right-continuous with A(0) = 0 . We shall verify for
all stopping-times t < T, that

EY(t) £ EA(«T) (2.1)

This can be done directly using results from stochastic calculus. Indeed,
if we denote hc(') =min{ h(*),C} , and if we define M(") = Mn(') to
be the square-integrable martingale X+("‘rn) -A (), then Theorem
(2.53) (b) of Jacod (1979) implies that

t°t
X Tt t) halt't) = N %F(s) dhn(s) + f
Jhetee) = J) " X e+ |
T
n

l\r Ar
- [; " X*(s) dhe(s) + f; hols) dM(s) + f; " hols) dA, (s)

[ It is worth remarking here that the result we have used from stochastic

~

T

" hals) dxt(s)

calculus amounts to nothing more than integration by parts in case h(‘) is
left-continuous.] In the last expression, the first integral is a.s. < 0
because h(') is nonincreasing, and the second integral is a square-
integrable martingale. Therefore, replacing t by an arbitrary stopping-
time t , taking expectations, and relying on the Optional Sampling
Theorem to ensure that the expectation of the middle integral-term is 0 ,
we find

T
EY@ < E{ X' "0 ho( 0} < EJO " hale) dA L (B T E AL

EG a0 S e 0 e R e A s e L L R L S G RS L5 S A RS A LS R B
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as was to be shown.

Now Lenglart’s Inequality applied to the processes Y() and A(')

for fixed n and C says in particular [ for c=1 and d=w in
Theorem {.1 ]

T
Plsp X' hH> 1) < E j” h_(s) dA, (s) (2.2)
OSsStn 0

The proof of the Theorem is completed by letting n—e and C—o and
applying the Monotone Convergence Theorem to both sides of (2.2).
If h() is nonrandom, then E A(T) is by the Fubini-Tonelli

T
Theorem equal to J h(s) du(s) , and the Theorem is proved. ]
0

3. Universal rate-of-growth estimates for submartingales. It is well

known that if the submartingale X() = Mz(') is the square of a zero-
mean martingale with almost-surely continuous paths, then the Law of the
Iterated Logarithm for Brownian Motion has the consequence that a.s. on
the event M) (w) = 0,

limsup X(t) / { 2 At) log log At} } = 1 (3.0)

t—
where the compensator A() of X() is the same as the predictable
variance <M>(‘) of M(*) [ See Durrett 1984, p. 77, where references
are also given to analogous results for squares of discontinuous
martingales. ]| On the other hand, there are no corresponding results
known to the author on strong rates of growth in terms of A() for
general submartingales X(-) . Our main app!': «wion of Theorern 2.1 is to
prove such a result.
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Theorem 3.i. Suppose that X() for t 2 0 is a locally square-
i integrable {F,}-submartingale with X(0)=0 and X() € D[0,T] a.s. for
‘ each T{w.Let A +(') denote the predictable compensator of X () 3
\J
define for each m > 0, t(m) = inf{t>0 : A_(t) 2 m}, and let g(t) be any
] nonrandom positive increasing function such that for some m> 0
gy
" E r) [qA, )] dA [ < . (3.1)
t(m)
Then on the event | A (T)—o as T—wo ], almost surely
limsup X(T) / g(A (T) =0 .
T
Proof. Let q(‘) be as in the hypotheses of the Theorem. Then the random
function  h(t) = 1/q(A (max{t(2),t})) is predictable, right-continuous,
and a.s. nonincreasing . Therefore Theorem 2.1 applied to
Xt (max{t(m),"})-X" (t(m)) , m22, says that
P{ sup { [XH(s)-XT (xm))]'his) : tim) €8} 2¢ } <
2 _t @ -t ®© _t
ﬁ c E{ [ h(s) dA_(s) } =c¢c E J [q(AL(sN] dA_(s)
. t(m) t(m)
. Now fix a nonrandom sequence { m(k) : k=1,2...} of real numbers =
- which increases to o so rapidly that 1::
< E 1 RN
| E fb (gA,W)] dA,W < o . - -
: St Jemiy T * T2
[This can be done because the finiteness of the expression in (3.1) implies ?-E:EE
f that the same expression must converge to 0 as m—po . | The :‘,;‘fg
.': o SR
-
R T N N e S N o g S B
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inequality of the previous paragraph together with the Borel-Cantelli
Lemma imply for each c > 0 [ since the right-hand sides of the inequality
are summable in k when m is replaced by m(k) ] that

P{ sup{(X+(s)—X+(r(m(k))))'h(s) : timk)) 2s} 2 c i.o. ink } =0

It follows that a.s. on the event | A+(T)?oo as Tt ] , for all k 2
some k(w,c) ,

+, ot

sup{ [X (s)-X (t(m(k)))] h(s) : s2t(m}) } £ ¢

Thus for all k 2 ko(w,c) [ for a set of w with probability 1 ]

sup XTs)his) € XT(rm®) hxmK) + c .
t(m(k))<s

In other words, we have proved that a.s. when A +(') increases to @ ,
X'(s) = 0(glA, () as s, ie. limsup X(s)/q(A,(8) < .
S—bw
To see that the last almost-sure lim sup is infact 0, it suffices to
remark [as is standard in the theory of integral tests for stochastic re‘es
of growth] that whenever assumption (3.1) holds for a nonrandom
nondecreasing function q(‘), it must also hold for another such function
Q) for which g(t)/Q(t) increases sufficiently slowly to o ast —w .
Then the conclusion that X+(s) = O Q(A +(s)) ) as s and A +(s) —®
immediately implies that
lim sup X+(s)/q(A+(s)) =0 as.on [A (o) =] .
S—»
The hypothesis (3.1) takes a much simpler form in case the

compensator A (") is either continuous or has jumps which are strictiy
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N
controlled in magnitude. As Example 3.3 will show, bounding the sizes of E;,}":‘j
jumps of A_(*) can be much less restrictive than bounding the jumps of Lg;i
X() itself. In what follows, the jump f(t)-f(t-) at t of a function f in ‘\':-;\;
D([0,T]) is denoted Af(t). Ry

h

.::;4-:

Lemma 3.2. If the submartingale X(} is such that the predictable -
compensator A + of X+ satisfies sup AA +(t) £ C a.s. for a finite -_';_:'::
t SR
constat C , then the hypothesis (3.1) of Theorem 3.1 on the S
nondecreasing function q(*) is equivalent to the condition SR
'.-;-_Z-.j.ff'_
_t T,
F [g(x}] dx < o for some finite m > 0 . RN
m YA TN )

Proof. The hypothesis implies that x < A_(t(x)) < x+C for all x, so
that A Jr(r(m+2(k+1)C) - A +(r(m+2kC)) lies between C and 3C, and

1 o t(m+2(k+1)C) 1
[qA W)] dA (W = [qA, )] dA, )
J(r,b(m) s +1 kgO J'r(m+2kC) T8 +
lies between
A+(t(m+2(k+1)C)) © A+(r(m+2(k+i)C))
S qx+30] dx, S B
0/ A, (c(m+2k0) E0 /A, (cmi2ic)y 49
Thus
_t K oY 34
ir [q(d] dx < J® [alA, ()] dA ) < J 75%;—) ;
m+4C T(m) m

and (3.1) is evidently equivalent to the integrability of 1/¢ on [m, ) for
sufficiently large m . O
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Example 3.3. Define a right-continuous nonnegative submartingale X(t)
to be constant on each interval [j,j+1) for j=0,1,2,... , with X(0) =0,
and

P{X(j+1) =k | (X(s): s$j) } = (n+1)” if X(j)=n>0, k=0
1 if X(j)=0, k=1

Then E{ X(j+1)-X(j) | (X(s):s$j) } = I[X(j):O] , So that

{ (k-i)/k1 if X(j)=k-1>0

ALt) = j§O I[X(j)=0, st We note in passing that the jumps of

A +( ') have size at most 1 , so that Lemma 3.2 applies, while there is no
upper bound on the sizes of jumps of X() .
Now let the sequence {tj} of times when X() returns to O be

defined for j 2 0 by T = inf{ k20: A, (k) = j}. Then it is easy to see

that since X(} is a Markov process, the sequence of waiting-times

T, = T, -7y -l for i21 are independent and identically distributed

1
random variables. An easy calculation shows that P{Ty2n} = n for

n21. Since Tj is the largest value taken on by X(‘) between times

iy and T for any nondecreasing strictly positive function q(°)

lim sup X(s)/q(A(s) = lim sup Tk / q(k)
s—#co k—boo

But for any constant b > O , by the Borel-Cantelli Lemmas
1

tif 5 [bqm ] =o

PITe =gl b0 W)= 0if S [bgn] <o

(3.2)

where [x] again denotes the greatest integer < x, and the summations in
(3.2) are taken over all positive integers n for which b-'q(n) 2 1
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'3:: i Since b is arbitrary, and since the convergence or divergence of the :}_:f:
53 sums in (3.2) is equivalent to the convergence or divergence of the &
> integral o
J‘" "ol
o~ -t RN
« Jz [q() ] dx , 03
e : R
2 we conclude that in this example , almost surely S
< o if J=ow “:':f
: lim sup X(0) / qA, ) = { 5
= s—ho 0 if J{w eras
:_ Taking Corollary 3.2 into account, we note that Theorem 3.1 says in this :
E Example precisely that the lim sup is zero a.s. if J is finite. i
N Fooh
» Theorem 3.1 shows that X(s) = o q(A,(s) ) a.s. Thus our example L
shows that the rate-of-growth given by the Theorem is best-possible in the ,x’
{i\ sense of identifying those functions q for which X(s) = of g(A,(s)) ) ';,
-' a.s. on [A+(oo) —w]. i\‘
- R
;::. ;i\"
3 4. Applications to SDE’s and Brownian occupation-times. E-*':;
8
,', 4.1 Growth of solutions to stochastic differential equations. Consider :_.ﬂ'
S first a solution X(t) to the stochastic differential equation R
Ys S
> ..‘.-..
= dX(t) = gl dt + blt) dWE) , X(0) =1 2%
i for (possibly random, but progressively measurable and nonanticipating)
E‘ functions b and g which are everywhere nonnegative. Then X(') is a 2
\ local submartingale which, under mild conditions on g and b , is a.s. ”.
% path-continuous. Such a model arises naturally in Inventory Theory or in E
[~ Economics where g(*) represents an income rate, measured in constant f;'ié
Int dollars (corrected for inflation over time from time-origin O ), and where ‘f‘;
\E b(t) dW(t) represents the current fortune at time t multiplied by the T’
':\ 12 =
ra PO
‘ -

N
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4
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instantaneous interest rate minus the instantaneous inflation rate.
Theorem 3.1 allows us to bound the order-of-magnitude of the

nonnegative long-term fortune X({t"o ) measured until the time o
inf {s>0 : X(s) £0} of "bankruptcy" in terms of the compensator

"o
Alt) = r N g(s) ds
0

for X("‘an) , on the event | g =w, A(w)=w ] where A(') increases
a.s. to o without reaching O . The bound given by Theorem 3.1 is
rather different from, and should be compared with, the iterated
logarithm bound (3.0) on the submartingale

2
[xa) f a(s) ds] in terms of f b(s) ds .
0 0

4.2 Total occupation times for Brownian Motion. Now let W(t) be a
standard real-valued Brownian motion process, and le¢ B be any
(possibly unbounded) Lebesgue-measurable subset of the line. Define the
real-valued, twice-differentiable, nonnegative, increasing convex function

g(x) through the equation
g7 ) = 2Ig(x) ,x€R; g(0) =0 (4.1)

~

Then g(W(t)) is by Ito’s Lemma a submartingale with compensator
r IgW,) ds =L, (B) [with respect to a(W i Osust) ] . This compensator
0

is otherwise known as the total occupation time for the Wiener process
W(:) and theset B uptotimet.
Theorem 3.1 implies therefore that

lira sup g(W(t))/q(Lt(B)) = 0 a.s.
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for any positive increasing function q such that 1/q is Lebesgue
integrable on [0,). In particular, since g is an increasing function for
nonnegative values of its argument, and since the law of iterated
logarithm (3.0) bounds the positive values of W(t) for all sufficiently
large t, we conclude

liminf gL B) /g([2tloglogt?) = @ as. (4.2

t—ro
When B is a bounded set, this kind of result should, in a spirit like that
of Donsker and Varadhan (1977, p. 708, remarks following formula (1.4))
be regarded as a Strong Law constraining the possible growth of X(t) as
t—o . [The reasoning is that asymptotic bounds below for Lt(B)
indirectly imply that X(t) cannot grow too quickly.] In the cases where
B has finite total Lebesgue measure A(B) , it is easy to check that the
function g(x) defined by (4.1) behaves asymptotically for large x like
A(B)'x , so that (4.2) says (for strictly increasing g} that

L,® / q-l([Zt log log t]%) —+ ® a.s. as t —w.

The laws of iterated logarithm of Kesten (1965) and Donsker and
Varadhan (1977) for local times imply [ for B with A(B) (] that

Lt(B)=O([tloglogt]é) a.s. as t—o .

Thus for B with finite total Lebesgue measure, our new result (4.2)

complements known iterated logarithm results.
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